符荣鑫 1,*艾昕 1张书豪 2费捷 3[ ... ]李航 1
作者单位
摘要
1 北京理工大学医学技术学院,北京 100081
2 北京理工大学自动化学院,北京 100081
3 中国船舶集团有限公司系统工程研究院,北京 100094
4 北京理工大学集成电路与电子学院,北京 100081
长时程细胞成像及分析在生物医学研究中具有重要意义。然而,由于荧光显微镜存在光漂白和光毒性等问题,其应用受到一定限制。非标记成像技术为克服这些限制提供了可行的解决方案。研究了干涉光谱分析技术作为解决非标记长时程活细胞监测问题的潜在方法,并提出了一种基于高光谱干涉重构的非标记定量显微成像技术。通过建立描述干涉信号的数学模型,设计样本定量重构算法,从而获取活细胞纳米结构和干质量分布的定量信息。系统采用自反射式干涉结构,不依赖复杂的光学调制元件,结构简单、操作便捷。此外,本文还在光学显微成像的基础上集成了具有细胞培养能力的微型细胞培养箱,实现了原位长时程成像。利用该系统,研究了不同细胞全细胞周期内的纳米结构定量和干质量变化,展示了本工作在生物医学领域的应用潜力。
计算成像 定量干涉 非标记成像 纳米级精度 原位细胞监测 
中国激光
2024, 51(9): 0907018
Shuailong Zhang 1,2,3,4,5,9,*Mohamed Elsayed 4,5Ran Peng 6Yujie Chen 7[ ... ]Aaron R. Wheeler 3,4,5,10,*
Author Affiliations
Abstract
1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
3 Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
4 Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
5 Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
6 Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
7 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
8 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
9 e-mail: shuailong.zhang@bit.edu.cn
10 e-mail: aaron.wheeler@utoronto.ca
Optoelectronic tweezer (OET) is a useful optical micromanipulation technology that has been demonstrated for various applications in electrical engineering and most notably cell selection for biomedical engineering. In this work, we studied the use of light patterns with different shapes and thicknesses to manipulate dielectric microparticles with OET. It was demonstrated that the maximum velocities of the microparticles increase to a peak and then gradually decrease as the light pattern’s thickness increases. Numerical simulations were run to clarify the underlying physical mechanisms, and it was found that the observed phenomenon is due to the co-influence of horizontal and vertical dielectrophoresis forces related to the light pattern’s thickness. Further experiments were run on light patterns with different shapes and objects with different sizes and structures. The experimental results indicate that the physical mechanism elucidated in this research is an important one that applies to different light pattern shapes and different objects, which is useful for enabling users to optimize OET settings for future micromanipulation applications.
Photonics Research
2022, 10(2): 02000550
Author Affiliations
Abstract
1 Institute for Electric Light Sources, School of Information Science and Technology, Engineering Research Center of Advanced Lighting Technology, and Academy of Engineering and Technology, Fudan University, Shanghai 200433, China
2 Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
In this work, a blue gallium nitride (GaN) micro-light-emitting-diode (micro-LED)-based underwater wireless optical communication (UWOC) system was built, and UWOCs with varied Maalox, chlorophyll, and sea salt concentrations were studied. Data transmission performance of the UWOC and the influence of light attenuation were investigated systematically. Maximum data transmission rates at the distance of 2.3 m were 933, 800, 910, and 790 Mbps for experimental conditions with no impurity, 200.48 mg/m3 Maalox, 12.07 mg/m3 chlorophyll, and 5 kg/m3 sea salt, respectively, much higher than previously reported systems with commercial LEDs. It was found that increasing chlorophyll, Maalox, and sea salt concentrations in water resulted in an increase of light attenuation, which led to the performance degradation of the UWOC. Further analysis suggests two light attenuation mechanisms, e.g., absorption by chlorophyll and scattering by Maalox, are responsible for the decrease of maximum data rates and the increase of bit error rates. Based on the absorption and scattering models, excellent fitting to the experimental attenuation coefficient can be achieved, and light attenuation by absorption and scattering at different wavelengths was also investigated. We believe this work is instructive apply UWOC for practical applications.
220.4830 Systems design 290.5850 Scattering, particles 290.5825 Scattering theory 230.6080 Sources 
Chinese Optics Letters
2019, 17(10): 100010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!